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Abstract. Statistical shape models (SSMs) are widely employed in med-
ical image segmentation. However, an inferior SSM will degenerate the
quality of segmentations. It is challenging to derive an efficient model
because: (1) often the training datasets are corrupted by noise and/or
artifacts; (2) conventional SSM is not capable to capture nonlinear vari-
abilities of a population of shape. Addressing these challenges, this work
aims to create SSMs that are not only robust to abnormal training data
but also satisfied with nonlinear distribution. As Robust PCA is an ef-
ficient tool to seek a clean low-rank linear subspace, a novel kernelized
Robust PCA (KRPCA) is proposed to cope with nonlinear distribution
for statistical shape modeling. In evaluation, the built nonlinear model
is used in ankle bone segmentation where 9 bones are separately dis-
tributed. Evaluation results show that the model built with KRPCA has
a significantly higher quality than other state-of-the-art methods.

Keywords: Statistical shape models · Corrupted training data · Non-
linear distribution · Kernelized Robust PCA

1 Introduction

Statistical shape models (SSMs) [1] play an important role in medical image
segmentation, where significant variabilities of a class of an anatomical struc-
ture are learned by principal component analysis (PCA) to guide and constrain
segmentations. However, often the existing models are derived from a set of
abnormal training shapes, which leads to a bias model as PCA is sensitive to
outliers. Furthermore, the conventional SSM assumes training data to follow lin-
ear distribution, namely it is not capable to cope with nonlinear subspaces. To
achieve higher accuracy and more flexibility, robustness to outliers and fitness
to nonlinear distribution are desired properties for an ideal model. In this work,
we aim to create such a model that can be used in segmentation.
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The problem of data contamination has raised intensively attention in many
applications. A large amount of approaches have been investigated to improve
the robustness of PCA in dimensionality reduction. Robust PCA (RPCA) [2] and
Low-rank Representation (LRR) [3] are the most frequently used ones: RPCA
decomposes the data matrix X into a latent low-rank matrix L and a sparse
matrix E of errors, which is minL,E ‖L‖∗ + λ ‖E‖1 , s.t.X = L + E; the basic
form of LRR is defined as minZ,E ‖Z‖∗ + λ ‖E‖2,1 , s.t.X = AZ + E, where
Z indicates the lowest rank representation of X with respect to a “dictionary”
subset A, usually A = X to avoid a loss of generality. However, neither RPCA nor
LRR is capable to cope with nonlinear or multimodal subspaces. It is well known
that Kernel PCA (KPCA) is a powerful technique that allows to generalize
PCA to nonlinear dimensionality reduction. With the inspirations from KPCA,
numerous works on kernelizing LRR have been proposed [4][5]. Unfortunately,
a sufficiently large subset of training datasets is crucial to build a dictionary
that can represent all the global structures. On the other hand, the topic of
kernelizing RPCA is rarely covered in literature [6]. This is because minimizing
l1 norm of an implicit matrix is more mathematically challenging than l2,1 norm.

In this work, we propose a novel kernelized RPCA algorithm to create non-
linear SSMs. The fundamental idea is to map the input data onto a feature space
where RPCA can be performed. Subsequently, a model is built with the pattern
knowledge learned from KRPCA. In evaluation, the built model is applied in
ankle bone segmentation and compared with the competing models built with
PCA, KPCA and a latest kernelized version LRR respectively.

2 KRPCA for Statistical Shape Modeling

In this section, we provide the derivation of KRPCA and the procedure of mod-
eling via KRPCA. Our derivation is based on a notation that given a subset of n
training shapes, a matrix X ∈ Rm×n = {x1, . . . , xn} is constructed with column
xi representing the ith shape vector.

2.1 Kernel RPCA

Deriving a nonlinear mapping from the input space I ∈ Rm×n to a high dimen-
sional feature space F ∈ Rd×n via a mapping function Φ, where d� m and d is
unknown. Thus each shape vector xi ∈ I is projected onto feature space where
it becomes φ(xi). As the projected data matrix Φ(X) ∈ F = {φ(x1), . . . , φ(xn)}
is implicitly represented, a kernel function κ(x, y) is induced to present the sim-
ilarity between shapes vectors in the input space. In this work we apply RBF
Gaussian kernel that κ(xi, xj) = 〈φ(xi), φ(xj)〉 = exp(−‖xi − xj‖2 /2σ2).

Afterwards, RPCA is performed in F without explicitly constructing the
nonlinear mapping Φ. Analogous to RPCA in linear subspace, we decompose
Φ(X) into two parts: Φ(X) = Φ(L) + Φ(E), where Φ(L) represents the feature
space projection of a clean low-rank matrix L ∈ I and Φ(E) represents that of
a sparse matrix E ∈ I. However, this complex system is infeasible to be directly
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solved due to the implicitness. We reformulate the problem by considering the
distributive property over matrix addition:

Φ(X)TΦ(X) = Φ(X)TΦ(L) + Φ(X)TΦ(E) , (1)

K = Φ(X)TΦ(X) be the constant kernel matrix where Kij = φ(xi)
Tφ(xj) =

κ(xi, xj). We define the matrix Φ(X)TΦ(L) = KL that:

Φ(X)TΦ(L) =

φ(x1)Tφ(l1) . . . φ(x1)Tφ(ln)
...

. . .
...

φ(xn)Tφ(l1) . . . φ(xn)Tφ(ln)

 =

κ(x1, l1) . . . κ(x1, ln)
...

. . .
...

κ(xn, l1) . . . κ(xn, ln)

 = KL,

(2)
where KL ∈ Rn×n. Similarly, Φ(X)TΦ(E) = KE is defined and the decomposi-
tion problem in feature space is rewritten as:

min
KL,KE

‖KL‖∗ + λ ‖KE‖1 , s.t. K = KL +KE . (3)

In this way, the low-rank model is applied on the kernel matrix K that
determines the similarity of shapes in input space, in order to find the underlying
clusters of similar shapes. We employ the augmented Lagrange multiplier (ALM)
to solve Eq(3):

L(KL,KE , Y, µ) = ‖KL‖∗+λ ‖KE‖1+〈Y,K−KL−KE〉+
µ

2
‖K −KL −KE‖2F ,

(4)
where Y decides the multiplier, µ is a positive parameter for adaptive penaliza-
tion and λ is used to balance nuclear and l1 norms. With an iteration strategy,

K
(k+1)
L and K

(k+1)
E are obtained for the (k + 1)th iteration.

Solving KL. Fix the other variables, K
(k+1)
L can be obtained by solving the

subproblem:

K
(k+1)
L = min

KL

‖KL‖∗ +
µ(k)

2

∥∥∥∥KL −
(
K −K(k)

E +
1

µ
Y (k)

)∥∥∥∥2
F

, (5)

the analytical solution to Eq(5) is given below and the proof is provided in
Lemma 1.

K
(k+1)
L = D1/µ(k)

[
syl
(
µ(k)I,

(
(K

(k)
L )TK

(k)
L

)− 1
2 , −µ(k)(K−K(k)

E +
1

µ(k)
Y (k))

)]
.

(6)

Lemma 1. Let F (X) = ‖X‖∗ + θ ‖X −H‖2F , where θ and H are constant.
The solution X∗ can be given by deriving the subgradient of F (X) and seeking
its stationary point as F (X) is convex. To reduce dimensionality, a shrinkage
operator Dτ [X] = Udiag(Σii − τ)V T [7] is leveraged to shrink the rank of X∗,
where UΣV T is the singular value decomposition of X.
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First we set the subgradient of F (X) with respect to X zero and have:

∂

∂X
F (X) = X(XTX)−

1
2 + 2θX − 2θH = 0 , (7)

obviously it is not feasible to get X∗ and (XTX)−
1
2 simultaneously, we con-

sider (XTX)−
1
2 as constant in computation of X∗ and iteratively obtain X∗ and

(XTX)−
1
2 . Thus the problem of Eq(7) is well known as Sylvester equation that

AX + XB + C = 0. Here it is solved by the function syl from C++ Armadillo
Library, that X̂ = syl(A,B,C). By applying the shrinkage operator Dτ to X̂, we
arrive at the solution:

X∗ = Dτ [ syl
(

2θI, (XTX)−
1
2 ,−2θH

)
] . (8)

Solving KE. Fix the other variables, Kk+1
E is obtained by solving the subprob-

lem:

K
(k+1)
E = min

KE

λ ‖KE‖1 +
µ(k)

2

∥∥∥∥KE −
(
K −K(k+1)

L +
1

µ(k)
Y (k)

)∥∥∥∥2
F

, (9)

the problem can be efficiently solved via the soft-thresholding operator Sτ [X] =

max(X − τ, 0) + min(X + τ, 0) in [7]. Thus K
(k+1)
E is defined as:

K
(k+1)
E = Sλ/µ(k)

[
K −K(k+1)

L +
1

µ(k)
Y (k)

]
. (10)

By updating Y (k+1) = Y (k) + µ(k)(K − K
(k+1)
L − K

(k+1)
E ) and µ(k+1) =

min(ρµ(k), µmax), a new iteration is generated. The procedure converges to a

point when
∥∥∥K(k+1)

L −K(k)
L

∥∥∥
F
→ 0 and

∥∥∥K −K(k+1)
L −K(k+1)

E

∥∥∥
2
< ε, where

the optimal solution K∗
L to the optimization is reached.

2.2 Applying KRPCA to statistical shape modeling

To reduce dimensionality in feature space, K∗
L is leveraged to compute the first

kth eigenvectors vα and eigenvalues λα by K∗
Lv

α
j = nλαvαj , j = 1 to n and α = 1

to k. Therefore, a lower dimensional KPCA space is constructed. For a sample
x ∈ I, we extract the principal components in KPCA space βα by projecting x
onto the selected eigenvectors that

βα(x) =

n∑
i=1

vαi κ(xi, x), α = 1, . . . , k . (11)

To apply KPCA into SSM, Davies et al. gave a definition of probability
density function (PDF) p̃ of KPCA model in [1]:

p̃(x) ∝
k∑

α=1

βα(x)βα(x) =

n∑
i,j=1

k∑
α=1

vαi v
α
j κ(xi, x)κ(xj , x) , (12)
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representing the square of distance to the origin in KPCA space. As a result, the
model captures nonlinear patterns by considering this “proximity to data” mea-
sure p̃. Up to now, the KRPCA is built and the whole procedure is summarized
in Algorithm 1.

Algorithm 1 Algorithm of Statistical Shape Modeling Using KRPCA

Input: Observation matrix X ∈ Rm×n

Initialize: Y = KL = KE = 0, K = Φ(X)TΦ(X), k = 0
1. while not converge do
2. Estimate K

(k+1)
L by Eq(6)

3. Estimate K
(k+1)
E by Eq(10)

4. Update Y (k+1), µ(k+1), k → k + 1
5. end while
7. Perform Eigen Decomposition K∗

Lv
α
j = nλαvαj

8. Compute principal components in KPCA space βα(x) =
∑n
i=1 v

α
i κ(xi, x)

9. Get the PDF p̃ for nonlinear statistical shape model
Output: the built KRPCA model

Usually it is trivial to back project parameter vector βα(x) onto the input
space, however, it is necessary to generate sample vectors in the input space for
further evaluation. Thus we employ the reversed reconstruction approach in [8]
to get the reconstructed shape x̂ ∈ I by:

x̂ =

∑n
i=1 γiκ(x̂, xi)xi∑n
i=1 γiκ(x̂, xi)

, γi =

k∑
α=1

βαvαi . (13)

3 Evaluation

The evaluation consists of two parts: (1) we investigate the performance of KR-
PCA by evaluating and comparing the quality of models built with PCA, KPCA,
KRLRR [5] and our proposed KRPCA, where 25 corrupted ankle shapes with
ground truth randomly chosen from the total 35 datasets are used; (2) we apply
the built models in ankle bone segmentation as the segmentation quality reflects
the model efficiency, where the remaining 10 unseen datasets are employed.

3.1 Model evaluation

We set the same parameters µ0 = 1.25, λ = 1/
√
n, µmax = 1e6, ρ = 1.6, ε = 1e7

and σ = 5 for all methods that are learned from [2][8]. Fig. 1-(a) shows an
example of corrupted training shape where bones are abnormally overlapped.
A necessary pre-processing step before modeling is establishing correspondence
among all the shapes to generate the same number of landmarks (from Fig. 1-
(a) to (b), the color represents the order of landmark). Here a shape of ankle
contains 9 independent bones with 5148 landmarks in total.
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(a)

→

(b)

→

(c)

→

(d)

Fig. 1: Flow chart of modeling and back projection

Table 1: Back projection error MAD
Mean (mm) Min (mm) Max (mm)

Training Datasets 7.77 ± 3.51 2.66 17.03

PCA 7.72 ± 3.45 2.72 16.87

KPCA 7.17 ± 3.35 2.41 16.78

KRLRR 9.20 ± 6.67 2.56 25.98

KRPCA (Ours) 6.68 ±3.27 2.39 16.10

Back projection error. To evaluate the robustness to outliers of the competing
models, the corrupted training shapes are projected back onto the model (from
Fig. 1-(b) to (c)) to generate the corrected reconstructions (Fig. 1-(d)). We
define the back projection error by computing the mean absolute distance MAD
between the reconstructions X̃ = {x̃i}1≤i≤n and ground truth X̂ = {x̂i}1≤i≤n
as MAD = 1/n

∑n
i=1 Ψ(x̃i, x̂i), where Ψ(x̃i, x̂i) denotes the Euclidean distance

between the shape x̃i and x̂i. Table 1 shows the MAD results, where the row
“Training Datasets” is MAD between training shapes and ground truth that
indicates the degree of corruption of training shapes.

Generalization ability and Specificity. To evaluate the quality of SSMs,
the most frequently used measures are Generalization ability and Specificity [1].
Fig. 2 shows the results for Generalization ability and Specificity for the first 8
modes of all competing models.

3.2 Application in ankle bone segmentation

Even though the shape of ankle has a zero mean, it is still challenging for the SSM
to learn the exact variation of each bone. As a result, often the segmented bones
are abnormally overlapped, which motivates us to create a nonlinear model. We
apply the built models to an existing segmentation approach [9] based on con-
ventional SSM. The accuracy of segmentation is measured by Hausdorff distance,
Dice coefficient and overlap volume percentage (compare Table 2). For an intu-
itive view, Fig. 3 shows the comparison of segmentation results from the PCA
model, KPCA model, KRLRR model and our KRPCA model.

In summary, our proposed KRPCA model has a significantly higher quality
in terms of all the measurements; KRLRR and KPCA both perform better than
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Fig. 2: Generalization ability and Specificity for the models built with PCA,
KPCA, KRLRR and KRPCA. Smaller value indicates better result.

Table 2: Segmentation results for reference PCA model and competing models.
Note that smaller Hausdorff distance indicates better result; for Dice coefficient
and overlapping volume percentage, larger value represents better result.

Hausdorff Distance
(mm)

Dice Coefficient
Volume Overlap

(%)
Mean Min Max Mean Min Max Mean Min Max

PCA 7.39±3.30 3.22 15.00 0.86±0.10 0.60 0.93 77.94±12.90 43.02 88.62

KPCA 8.13±3.59 3.64 14.41 0.87±0.07 0.76 0.93 82.38±10.99 61.42 87.43

KRLRR 10.32±5.12 3.22 20.99 0.90±0.03 0.87 0.95 82.38 ± 4.32 76.94 90.46

KRPCA 7.28±2.93 2.36 11.05 0.91±0.02 0.88 0.96 83.67±4.31 79.22 92.29

PCA model, although KRLRR has a larger back projection error and Hausdorff
distance than PCA. However, the large standard deviation explains the larger
error, that is, KRLRR is not robust enough in conditions of a limited subset of
training data. This is also the strong motivation for us to kernelize RPCA rather
than LRR.

4 Discussion

The motivation of this work is to create SSMs that are robust to abnormalities in
training data and satisfied with nonlinear distribution. A novel kernelized RPCA
approach is proposed for modeling. Evaluation results show that the model built
with KRPCA has a better quality compared with competed models in conditions
that the number of training datasets is relatively limited. In future work, we will
emphasize on segmentation with applying the built nonlinear model.

Acknowledgments. This research is supported by the National Research Foun-
dation, Prime Minister’s Office, Singapore under its International Research Cen-
tres in Singapore Funding Initiative.
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(a) PCA (b) KPCA

(c) KRLRR (d) KRPCA

Fig. 3: Figure shows the comparison of segmentation results of competing models
in Sagittal, Coronal and Axial position respectively.
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